
The Real Numbers and Cantorian Set Theory (Notes by John Cosgrave) 

The Real Numbers and Cantorian Set Theory 
 

Cantor1 has created a Paradise for us… David Hilbert2 
 

In 1964 he3 made the rare decision to serve on a public commission, 
responsible for choosing mathematics textbooks for California’s grade 
schools… This was the era of the so-called new mathematics in 
children’s education: the much debated effort to modernize the teaching 
of mathematics by introducing such high-level concepts as set theory 
and non-decimal number systems… Feynman did not take the side of 
the modernizers. Instead he poked a blade into the new-math bubble. 
He argued to his fellow commissioners that sets, as presented in 
reformers textbooks, were an example of the most insidious pedantry: 
new definitions for the sake of introducing words without introducing 
ideas. A proposed primer instructed first-graders: “Find out if the set 
of lollipops is equal in number to the set of girls.” Feynman described 
this as a disease [my emphasis, JC]. It removed clarity without adding 
any precision to the normal sentence: “find out if there are just enough 
lollipops for the girls.” Specialized language should wait until it is 
needed, he said, and the peculiar language of set theory never is 
needed. He found that the new textbooks did not reach the areas in 
which set theory does begin to contribute content beyond the 
definitions: the understanding of different degrees of infinity [my 
emphasis, JC], for example. GENIUS (Richard Feynman and modern 
physics, biography of RF) James Gleick, 1992 
 
I first had occasion to hear of the theory of sets at a lecture conducted 
by I. M. Gelfand4 for Moscow school children. He was then just 
beginning his teaching career… During the course of two hours he told 
us about what seemed to us to be completely improbable things: that 
there are just as many natural numbers as there are rational numbers, 
and that there are just as many points in an interval as there are in a 
square. Stories about Sets (1968, translated from Russian), N. Ya. 
Vilenkin 

 
These notes (a skeletal summary of the real work that took place in lengthy 
discussions/arguments in my office) are intended primarily for my second year BA 
students, and should be read only after those in-class discussions/arguments. Separate 
notes, on rational and irrational numbers and irreducible polynomials, and related 
decimal expansions and continued fraction expansions, are available in Maple 
worksheets. 
 

                                                           
1 Georg Cantor (1845-1918), revolutionary mathematician, creator of the theory of transfinite sets. 
http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Cantor.html 
2 David Hilbert (1862-1943), one of the greatest mathematicians of all time. 
http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Hilbert.html 
3 Richard Feynman (1918-1988), the renowned US physicist, winner of the Nobel Prize in Physics. 
http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Feynman.html  
4 Israil Gelfand (1913-), legendary Ukrainian mathematician, now working (in his 90th year) in the US. 
http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Gelfand.html  
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In my own case I learned Cantorian set theory through reading (initially in one of 
Felix Klein5’s books, later Cantor’s Dover book on Transfinite Numbers. In 1971 I 
came upon Vilenkin’s little gem of a book, Stories about Sets) and reflection. My 
current6 students learned about it, sitting in my office, being asked questions (initially 
about Hilbert’s Hotel (Section 1)), and arguing over points… 
 
Section 1 Hilbert’s Hotel (rooms, buses, rooms occupancy cards, associated 

binary expansions) 
 
Section 2 Cantor enters: his classic proofs concerning the natural and rational 

numbers, and the natural and real numbers. Some concepts and 
terminology: finite, infinite, countable (denumerable), uncountable. 
Some standard results concerning countable and infinite sets. 

 
Section 3 Algebraic and transcendental numbers. Cantor’s proof that 
                        transcendental numbers existed. Euler’s conjecture concerning some  
                        possible transcendental numbers, and Hilbert’s 7th problem. 
 
Section 4 “I see it, but I do not believe it…” Cantor (in a letter to Dedekind7) 

What did Cantor see that he could not, at first, believe? 
 
Section 5 Cantor’s ‘nested interval’ proof. 
 
Section 6 Higher levels of infinitude: the power set of a set (another of Cantor’s 
                        great creations).  
 

Section 1 
 

Introduction. We begin our journey into ‘Cantor’s Paradise’ by thinking about an 
imaginary hotel (Hilbert’s Hotel), one with an infinite8 number of rooms; actually one 
with a very particular kind9 of infinite number of rooms: one whose rooms may be 
listed in a rather special way. Let us record an actual working: 
 
Definition. A Hilbert hotel, H, is one with ‘rooms’ , such that for every 
‘room’  (for of H, H has another room (it is understood that H has no 
other rooms but these and thus the rooms of H correspond in a 1-1 way to the 
standard natural numbers: every room corresponds to some natural number, and 
conversely). (H, it must be understood, has no ‘last’ room, like an ordinary hotel.) 

K,,, 321 RRR

1+nnR )N∈n R
,iR

 

                                                           
5 http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Klein.html  
6 In the 1980’s I gave a series of lectures for adults at University College Dublin, as part of its Extra-
Mural programme, and one of the topics I included was the Infinite. I ran them (the lectures), not as 
lectures, but as discussions, rather than presenting material in textbook style: definition(s), theorem, 
proof, more definitions, more theorems, more proofs… I believe that a journey to Hilbert’s Hotel is a 
good starting point for getting into real set theory, not the school-fed set theory junk. Yes, I’m most 
definitely in the Feynman camp. 
7 http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Dedekind.html  
8 Whatever that means… In the early stages we proceed with abandon, as if we know what ‘infinite’ 
means. 
9 Which will later be termed ‘countable’ or ‘denumerable’. 
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Let us make the understanding (which is not essential, but which enables us to get 
started on our Cantorian journey) that the hotel has a room occupancy rule dictating 
that only 1 person (at most) may occupy a room. An associated: 
 
Definition. By a Hilbert vector we mean one with an infinite number of co-
ordinates10, in which each entry is 0 or 1; thus a Hilbert vector, v, is one of the form 

),,,,,( 321 KK nεεεε  
where 1or  0=iε for every  (We may think of a Hilbert vector as being a sort of 
room occupancy card in the obvious sense: should every room be occupied, then the 
corresponding Hilbert vector would have 

.N∈i

1=iε for all i; whereas if every other room 
from the first onwards was occupied, while every other room from the second 
onwards was empty, then the related Hilbert vector would be (1, 0, 1, 0, 1, 0, …)). 
 
Note. An apparently obvious remark is that we consider two Hilbert vectors to be the 
same (‘equal’) if, and only if, their co-ordinates agree in every place; put another way, 
two Hilbert vectors are considered to be different (not ‘equal’) if, and only if, their co-
ordinates differ in at least one place. So, for example: 
 

•  (1, 1, 0, 1, 0, 1, 0, …) and =1v =1'v  (1, 1, 0, 0, 0, 1, 1, …) are not equal 
(differ) since they don’t agree in (at least) the 4th coordinate. (The fact that 
they happen also to differ – in the example shown – in the 7th coordinate, is of 
no consequence.) 

 
Important observation, with a fundamental, later import11. With each Hilbert 
vector we may associate a real number – with value somewhere between 0 and 1 – as 
follows: let v be a Hilbert vector with ),,,,,,( 321 KK nv εεεε= then, from v, we may 
create a real number by setting ]1,0[∈r
 

KK +++++=
n
nr

2222 321
321 εεεε  

 
In fact, 2321 )0( KK nεεεε. is the binary expansion of the real number r. (Just as 
every real number r in [0, 1] has a decimal expansion, every such number has a binary 
expansion. There’s no mystery about this.) 
 
But now, an important point:  
 

• whereas two different real numbers will have different binary expansions (if 
they didn’t, the two numbers would be the same) 

 
• two different (looking) binary expansions may give rise to the same real 

number. Thus, for example, 2
1 has two different looking binary expansions: 

(0.10000…ad infinitum ) and (0.01111…ad infinitum  ,2 .) 2

                                                           
10 Again, of a very particular type (the same type as already considered): one co-ordinate per natural 
number. 
11 In connection with Cantor’s famous ‘diagonal decimal’ proof… 
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Also, for example, 8
7  has two different looking binary expansions: 

(0.1110000…ad infinitum ) and (0.1101111…ad infinitum  ,2 .) 2

 
This should not shock one; rather it should be viewed merely as being in the nature of 
things (of course it all rather takes for granted that one knows about – and ideally 
understands – subtleties in connection with the non-trivial concept of the sum of an 
infinite series). From our point of view, this will have later import in connection with 
this sort of phenomena: a real number may have two different (looking) decimal 
expansions: 

1010 )04999990()05000000(20
1 KK .. ==  

 
Of course it is only for some real numbers that this phenomenon occurs; in fact it only 
occurs for those rational numbers (in reduced form) whose denominators are divisible 
only by 2 or 5 (related, obviously, to the ‘10’ base): 2, 4, 5, 8, 10, 16, 20, etc. Rational 
numbers with such denominators have decimal expansions which are eventually all 
0’s or, equivalently, all 9’s. 
 
Definition. By a Hilbert bus, B, we understand one with ‘passengers’ ,  
(a passenger for every n  

K,,, 321 PPP

nP ).N∈
 
Our journey began with a single (thought-provoking!) 
 
Question. Can an ‘extra’ passenger be accommodated in a filled Hilbert hotel (with 
the room occupancy rule in force) without someone already accommodated having 
to give up a room? Or perhaps it is impossible? 
 
Answer. For a novice there was a surprising (at first) answer… (The great Danish 
physicist Neils Bohr12 once said of anyone claiming to understand Quantum 
Mechanics that they had failed to understand the problem; here one might say of 
someone who is not surprised that they, too, have failed to understand the point…) 
One then reflected that the ‘surprise’ should be seen merely as an initial reflection of 
the nature of the ‘infinite’, which is radically different from the ‘finite’. 
 
Fundamental points 
 
1.  The passengers from an infinite13 number of Hilbert buses may be 

accommodated in a single Hilbert hotel (later that may be viewed as a way of 
understanding that the rational numbers and the natural numbers have the 
same cardinality) 

 
2.  The entire collection/set of all Hilbert vectors cannot be allocated in the 

rooms of a single Hilbert hotel in a 1-1 way (later that may be viewed as a way 
of understanding that the real numbers and the natural numbers do not have 
the same cardinality14) 

                                                           
12 http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Bohr_Niels.html  
13 ‘Infinite’ of a very particular kind (countable/denumerable). 
14 Strictly, that the set of real numbers in the interval [0, 1] and the natural numbers do not have the 
same cardinality. However, since there is a 1-1 correspondence between the points on any two line 
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A15 proof of 1. The passengers16 from the Hilbert buses are as follows:  
 

In bus 1:  KK ,,,,, ,13,12,11,1 nPPPP
In bus 2:  KK ,,,,, ,23,22,21,2 nPPPP
In bus 3:  KK ,,,,, ,33,32,31,3 nPPPP
… …   
In bus m:  

 … … 
KK ,,,,, ,3,2,1, nmmmm PPPP

 
(The key idea is to consider passengers by their location along the ‘short diagonals’: 
those passengers with fixed suffix sums (2, 3, 4, 5, … ) Consider the ‘suffix sums’, 
the values of the ‘ ’, where m gives the number of the bus, and n gives the 
number of the passenger within that bus; then, for each natural number (from 2 
onwards) there are only a finite number of m’s and n’s which sum to that number: 

nm +

 
• there is only one passenger with suffix sum 2, namely  1,1P
• there are two passengers with suffix sum 3, namely and  2,1P 1,2P
• there are three passengers with suffix sum 4, namely and  ,3,1P ,2,2P 1,3P

… … and, in general: 
• there are  passengers with suffix sum n:   )1( −n 1,12,21,1 ,,, −−− nnn PPP K

 
Thus the entire ‘doubly-infinite’ collection/set of all passengers may be 
accommodated in a single Hilbert hotel by placing  
 

• in the first room 1,1P
• and in the next two rooms 2,1P 1,2P
• and  in the next three rooms ,3,1P ,2,2P 1,3P

… … and, in general (for all )2, ≥∈ nn N : 
• in the next 1,12,21,1 ,,, −−− nnn PPP K )1( −n rooms 
 

Comment. That result – expressed as it is – may be easily translated into the first 
surprise of Cantorian set theory: there is a 1-1 correspondence between the set of all 
rational numbers17, and the set of all natural numbers. 
 
Proof of 2. Suppose the entire collection/set of Hilbert vectors can be distributed  in a 
1-1 way in the rooms of a single Hilbert hotel (we now proceed to use the famous 

                                                                                                                                                                      
segments (be one a finite line, and the other a finite, or semi-infinite, or doubly infinite line segment 
(i.e. the ‘reals’), then the ‘strictly’ doesn’t carry any weight. 
15 There are many quite different ways of proving this result, and I will give another one later. 
16 And so each ‘passenger’ may be thought of as being related to a rational number in the obvious way: 
passenger is related to the rational numbernmP , .n

m  
17 As formulated here it would only set up the 1-1 correspondence for rationals (not in reduced form) 
with positive numerators and denominators, but it is a trivial exercise to extend it to all rationals (it’s 
merely two Hilbert buses, and one extra passenger. Do you see why?) 
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‘diagonal’ argument that Cantor introduced into Mathematics; the reason for the 
nomenclature ‘diagonal’ will be immediately clear) 
 

In room 1 is the Hilbert vector ),,,,,( ,13,12,11 KK nv εεε11,ε=  
In room 2 is the Hilbert vector ),,,,,( ,23,21,22 KK nv εεε 22,ε=  
In room 3 is the Hilbert vector ),,,,,( ,32,31,33 KK nv εεε 33,ε=  
… … 
In room n is the Hilbert vector ),,,,,( 3,2,1, KK nn,εnnnnv εεε=  
… … 
  

Define the Hilbert vector  byv 18 ),,,,,,( KK nεεεεv 321= where for all 
then that  is not in any room. Why? It’s obvious:  cannot be in any room 

since its n

,nnn ,εε ≠

;N∈n v v
th coordinate differs (by definition/construction) from the nth coordinate of 

the Hilbert vector supposedly allocated to the nth room of the Hilbert hotel. 
 

Section 2 
 

Cantor enters 
 
Introduction. Our main interest in this course is to understand some of the 
revolutionary ideas introduced into Mathematics by the truly great genius 
mathematician, Georg Cantor. Cantor opened up great vistas of mathematical thought 
with his (gradual) introduction of his theory of transfinite numbers, or ‘set theory’. 
 
Getting started. ‘Set theory’ begins with counting: how many of this are there, how 
many of that are there? Are there the same number of this as that? Are there more of 
this than that? Indeed, what exactly do we mean by ‘same’ and ‘more’? In our 
everyday lives these are terms that most people take so much for granted, they would 
hardly believe that anyone would be troubled by their meanings: 
 

• If there are 98 pupils in school A, and 89 pupils in school B, then there are 
more pupils in school A than in school B (alternatively: the number of pupils 
in school A is greater than the number of pupils in school B, or there are 
fewer pupils in school B than in school A, or the number of pupils in school 
B is less than the number of pupils in school A) 

 
• If there are 98 pupils in school C, then there are the same number of pupils in 

school A as in school C (alternatively: the number of pupils in school C is the 
same as the number of pupils in school A, or the number of pupils in school C 
is the same as the number of pupils in school A 

 
It could be said that one only begins to be troubled when one considers infinite 
collections/sets of things/elements. Of course there is a history to all of this, going 
back at least to Aristotle, and later Galileo and others.  
 

                                                           
18 This definition entails the classic Cantor diagonal construction, one of Cantor’s great creations. 
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How many primes are there between (say) 1 and 10? Of course there are four (the 
‘set19’ whose ‘elements’ are 2, 3, 5, and 7). And how many squares 
are there between (say) 1 and 20? Of course there are four (the ‘set’ 

whose ‘elements’ are 1, 4, 9, and 16). Comparing ‘finite’ collections 
seems fairly straightforward, but what about comparing two infinite collections/sets 
(‘infinite’ in the sense that both contain and infinite number of things/elements). 
Indeed, what exactly is meant by an ‘infinite’ number of things/elements

}7,5,3,2{1 =S

}16,9,4,1{2 =S

20. 
 
Some (to be modified) definitions and intuitive results. At one time the meanings 
of ‘equal/more/less in number’ were so taken for granted that precise meanings might 
not have been recorded. And the consequences of those definitions, too, were so taken 
for granted. For later purposes it’s quite important to record them, and see those 
consequences. 
 
Definition 1. Let A and B be two collections/sets21 of things/elements, then A and B 
are said to have the same numbers of things/elements (or to have the same 
cardinality) if there is a 1-1 correspondence between their elements. 
Notation. .BA =  
 
Examples 1. 
 

• Let A be {p, q, r} and B = {2, 6, 23}, then A and B have the same cardinality 
since there is the 1-1 correspondence between the elements of A and those of 
B: p 2, q↔ ↔ 6, r 23. ↔

 
• Let22 A be {2, 4, 6, 8, 10, … } and B = {3, 6, 19, 12, 15, …}, then A and B 

have the same cardinality since there is the 1-1 correspondence the elements of 
A and those of B: 2 ↔ 3, 4 ↔ 6, 6 ↔ 29, 8 ↔ 12, 10 ↔ 15, … , (in general:) 
2n 3n (for all  ↔ ).N∈n

 
Definition 2. Let A and B be two collections/sets23 of things/elements, then A is said 
to have a greater numbers of things/elements (or to have greater cardinality) if there 
is a 1-1 correspondence between the elements of B and a proper subset of A. 
 
Convention. If A has a greater number of elements that B, we may also say that B has 
fewer elements than A (or that the cardinality of B is less than the cardinality of A). 
 
Notations. BA >  (alternatively ).AB <   

                                                           
19 I hope I can be forgiven for straightaway using ‘set theory’ language before we have really entered 
the world of Set Theory. It would be a little artificial of me to not use the language (since almost every 
school child has encountered it), and instead use words like – say – ‘thing(s)’ (for element(s)’) or 
‘collection(s)’ (for ‘set(s)’) 
20 So far we have used terms like ‘finite’ (number of) and ‘infinite’ (number of) as though we knew 
what they meant. Of course it is patently nonsensical to say something like: a set is ‘finite’ if it contains 
a ‘finite’ number of elements (one would hardly say that a ‘good’ person is a person who does ‘good’ 
things…) 
21 ‘Finite’ or ‘infinite’. 
22 It is intended that A consists of all multiples of 2, while B consists of all multiples of 3. 
23 ‘Finite’ or ‘infinite’. 
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Examples 2. 
 

• Let A be {p, q, r, s} and B = {2, 6, 23}, then A has a greater number of 
elements than B, since there is the 1-1 correspondence between the elements of 
B and a proper subset of A: p ↔ 2, q ↔ 6, r ↔ 23. 

 
• Let24 A be {2, 4, 6, 8, 10, … } and B = {4, 8, 12, 16, 20, …}, then A –

according to the above Definition 2 – has a greater number of elements than 
B since there is the 1-1 correspondence the elements of B and a proper subset 
of A: 4 4, 8 8, 12 12, 16↔ ↔ ↔ ↔ 16, 20 ↔ 20, … , (in general:) 2(2n) 4n 
(for all  In fact, B is a proper subset of A. 

↔
).N∈n

 
The historical rejection. A complete study of the pre-history of Cantor’s work is not 
possible in a short course, but it is not an over-simplification to record that the 
essential source of disquiet before Cantor’s time (and his supportive fellow-
colleague Dirichlet played a great part in clarification some of Cantor’s omissions) 
was that the above definitions appeared only to make sense in the case of finite 
collections/sets. 
 
Meaning? Consider, briefly, some of the (perhaps unwritten) truths one tends to take 
for granted with respect to the meanings of ‘same/equal’, ‘more/greater’, 
‘less/fewer’; I will write telegraphically (and do remember this merely records 
discussions held at greater length in active classroom exchanges): 
 

1. If B=A  then .AB =  (that would hardly raise an eyebrow: if A has the 
same cardinality as B, then B has the same cardinality as A). 

 
2. If B=A  and CB =  then CA =  (that, too, would hardly surprise: if A 

has the same cardinality as B, and B has the same cardinality as C, then A has 
the same cardinality as C). 

 
3. If B>A  and CB >  then CA >  (that, too, would hardly surprise: if A 

has greater cardinality than B, and B has greater cardinality than C, then A 
greater cardinality than C). That is known as the ‘Trichotomy Law’. 

 
4. If B>A  then (surely?) BA ≠ and (surely?) BA </  (that would normally 

be laughed at: if A has greater cardinality than B, then (surely!) A could not 
have the same cardinality as B, nor could A have a smaller cardinality as B). 

 
#1, #2 and #3 cause no difficulties (with respect to the definitions), #4 is deeply 
troubling with respect to ‘infinite’ sets, which is one of the principal reasons for the 
earlier (historical) ‘rejection of infinite’ because of the ‘paradoxes’ associated with 
Galileo.  For example 
 

• there appears to be the same number of natural numbers as even natural 
numbers:  1 2, 2 4, 3↔ ↔ ↔ 6, … , (in general:) n ↔ 2n (for  ).1≥n

                                                           
24 Here it is intended that A consists of all multiples of 2, while B consists of all multiples of 4. 
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• at the same time there appears to be more natural numbers than even ones: 
don’t pair ‘1’ from N with any even natural number, and then establish the 
following 1-1 correspondence (between the rest of N and all the even natural 
numbers): 2 2, 3 4, 4↔ ↔ ↔ 6, … , (in general:) n ↔ 22 −n  (for  ).2≥n

• and at the same time there appears to be more even natural numbers than 
natural ones: don’t pair ‘2’ from the even natural numbers with any natural 
number, and then establish the following 1-1 correspondence (between the 
rest of the even natural numbers and all of N): 1 ↔ 4, 2 ↔ 6, 3 8, … , (in 
general:) n

↔
↔ 22 +n  (for    ).1≥n

 
In short. Adopting 2N as the (reasonable) notation for the even natural numbers, we 
have the apparently nonsensical: .2 and,2,2 NNNNNN <>=  One should try 
to empathise with earlier thinkers; it was entirely reasonable that they rejected the 
infinite: it appeared truly bizarre. The ‘Trichotomy Law’ that generations took for 
granted for ‘finite’ collections appeared to be violated for ‘infinite’ collections. 
 
We looked at some variations of the Galilean observation (you can make up your 
own), to mention just two: 
 

• If A and B are two circles, then there is a 1-1 correspondence between their 
points. 

• If L and l are any two line segments, the same is true, even if one is of finite 
length and the other is not. 

 
Thinking aloud; what could have happened, but didn’t. It could have happened 
that the rational numbers, Q, and the natural numbers, N, could not have been paired 
in a 1-1 way, since the former are ‘dense’ while the latter are ‘discrete’. But in 
December 1873 cantor proved that the elements of N and Q may be put in 1-1 
correspondence. That was a surprise! Next (as a natural question to have pondered), 
the real numbers R are the rationals and the ‘irrationals’ – I (say) – together, and the 
latter are also ‘dense’. If the elements of I could be put in 1-1 correspondence with 
those of N, then R (two Hilbert bus loads, as it were. You see that?) and N would 
have the same number of elements!! So, the question that Cantor asked himself in 
December 1973 (he wrote to Dedekind about it) was:  
 

Can (the elements of) N and R can a be paired in a 1-1 way?  
 

A historic moment. It could be said that true ‘set theory’ began with Cantor’s 
remarkable discovery (some three weeks after he began to think about it) of: 
 
The first great Cantor theorem. There is no 1-1 correspondence between the natural 
and the real numbers (so giving the first ever example of two infinite collections/sets 
that are genuinely different in ‘cardinality’). In fact (since there is no difference – in 
terms of cardinality – between the number of points on any two line segments) there is 
no 1-1 correspondence between the natural numbers and the real numbers on the unit 
line segment. 
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Cantor’s ‘diagonal decimal’ proof (with its slight, rectifiable flaw25). Suppose that 
 is a complete enumeration of all real numbers in [0, 1]. K,,,, 4321 rrrr

 
Now, every real number in[  is expressible as a decimal, and we have ]1,0
 

10,13,12,11 )0( KK nrrrr 11,r.=  

10,23,21,22 )0( KK nrrrr 22,r.=  

10,32,31,33 )0( KK nrrrr 33,r.=  
… … In general 

103,2,1, )0( KK nn,rnnnn rrrr .=  
 

where 0 for all i  9, ≤≤ jir ., N∈j

 
Now, define the real number r by26 r 10)(0 KK nrrrr 321.= where the { are 
chosen so that 

}nr
,11,1 rr ≠ ,22,2 rr ≠ ,33,3 rr ≠ … , ,nnn ,rr ≠ for all .N∈n  

 
[Aside. Recall the earlier  
 

Define the Hilbert vector v by v ),,,,,,( KK nεεεε 321=  
where for all ,nn,n εε ≠ ;N∈n then that  is not in any 
room. Why? It’s obvious: v cannot be in any room since 
its n

v

th coordinate differs (by definition/construction) from 
the nth coordinate of the Hilbert vector supposedly 
allocated to the nth room of the Hilbert hotel. 

 
for we would now like to say:] 
 
Then r  cannot be paired with any natural number since its nth decimal digit differs 
(by definition/construction) from the nth decimal digit of the real number supposedly 
paired with the nth natural number. Thus there is no 1-1 correspondence between the 
real numbers in [0, 1] and the natural numbers. [End of flawed proof.] 
 
And what is the flaw? It’s quite simple (and easily rectified), and is entirely to do 
with the fact that some real numbers have two different looking decimal expansions. 
 
Suppose, e.g., that there had been a 1-1 correspondence commencing like this: 
 
 
 
                                                           
25 It’s not uncommon for some low-level texts to present the proof with the flaw (not much of a 
‘proof’!) without comment. Of course it depends on the intended readership. Even Kac and Ulam (two 
outstanding Polish mathematicians) present the flawed proof in their (popular) Mathematics and Logic. 
Of course they probably made a judgement to protect – as it were – their readers from too many 
technicalities. In a book, where space is limited, that is acceptable, but it would not be right – in my 
view – to do so in an active teaching situation. Perhaps let it ride at first exposure (to see if anyone 
objects), and then draw attention to the rectifiable flaw. 
26 It is, of course, the ‘diagonal’ decimal construction. 
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101 )0( K10000000.=r  

102 )65210970( K8.=r  

103 )020( K876025.=r  
  104 )3710( K776613.=r

… … etc, 
 

the suggestion being that the decimal value of r  continues all 0’s after that initial ‘1’, 
and that none of the diagonal digits is a ‘9’. Suppose, then, that in forming ‘r’ one 
choose r  (so and 

1

0=1 )11,1 rr ≠ 0=nr  for all )2( ≥∈ nn N (and thus r  ).nnn ,r≠

But then the created ‘ ’ has value ( which is, of course, the same 
number as One would then not have established the 
claimed impossibility of a 1-1 correspondence. 

r 10)0 K099999999.
.)10K0(1 10000000.=r

 
All’s well though, since a rectification can be made. Instead of the earlier 
 

Now, define the real number r by r 10)(0 KK nrrrr 321.= where 
the are chosen so that }{ nr ,11,1 rr ≠ ,22,2 rr ≠ ,33,3 rr ≠ … , 

for all  ,nn,rnr ≠ .N∈n
 
proceed as follows 
 

define the real number r by 10)(0 KK nrrrrr 321.= where the 
are chosen so that none of them are 0 or 9 and  

… , 
}{ nr

2r ≠

,11,1 rr ≠

,22,r ,33,3 rr ≠ ,nn,n rr ≠ for all .N∈n  
 
Now ‘ r ’is none of the  , and so there is no such enumeration of the 
real numbers in [0, 1]. (In short, using terminology about to be introduced, the set of 
real numbers in [0, 1] is not countable (or is ‘non-denumerable’, or is 
‘uncountable’). 

K,,,, 4321 rrrr

 
Comment. You should see the connection with the room allocation cards in the 
Hilbert hotel: the cards are automatically different if they merely differ in a single 
coordinate, but the real numbers that may be associated with the cards are not 
necessarily different. One could alter the room occupancy rule – which in out earlier 
telling allowed at most 1 person per room – and instead allow up to 9 people per 
room. The new Hilbert vectors would be ( ),,,,,, 321 KK nεεεε with 90 ≤≤ iε for 
every  The occupancy cards (1, 0, 0, 0, 0, 0, ad infinitum) and (0, 9, 9, 9, 9, 9, 
ad infinitum) would be different, but the two real numbers associated with them are 
the same, since both equal 

.N∈i

.10
1  

 
Anyone who is familiar with the mathematics of ‘continued fractions’ (like you, my 
2nd year students) has no difficulty in reframing Cantor’s diagonal argument to prove 
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that there is no 1-1 correspondence between the natural numbers and (e.g.) the set of 
all irrational numbers27 in [0, 1].  
 
Proof. Suppose i  is a complete enumeration of all irrational numbers 
in [0, 1]. Now, every irrational number in[  is expressible as a unique continued 
fraction, and we have 

K,,,, 4321 iii
]1,0

 
],,,,,0[ ,13,12,11 KK naaai 11,a=  
],,,,,0[ ,23,22 KK naaai 22,a12,=  
],,,,,0[ ,33 KK naaai 33,a23,13,=  

… … In general 
],,,,,0[ 3, KK nn,annnn aaai 2,1,=  

 
where for all  N∈kja , ., N∈kj

 
Now, define the irrational number i by ],,,,,0[ KK naaaai 321=  where the {  
are chosen so that a

}na
,11,1 a≠ ,22,2 aa ≠ ,33,3 aa ≠ … , a ,nnn ,a≠ for all   Then 

i is not any one of the {  Why? It’s obvious: i cannot be any of the { because its 
n

.N∈n
}n}.ni i

th partial quotient differs (by definition/construction) from the nth partial quotient of 
the irrational number supposedly paired with the nth natural number. (I trust you 
recognise that I’ve simply transferred – with appropriate changes – the argument 
establishing the impossibility of allocating the Hilbert hotel room allocation cards in 
the rooms of a single Hilbert hotel) [End of proof] 
 
After all that excitement, we come back to earth to record some standard 
definitions and elementary results. 
 
Definition 1. A set S is said to be finite if there is no 1-1 correspondence between the 
elements of S and those of ’a’ some element adjoined to S.  U },{aS
 
Comment. I really only record this definition for the sake of it. At one time there was 
a temptation to say that a set is ‘finite’ (in the sense – as above – that it has only a 
‘finite’ number of elements) if it has elements{ for some 

However it was (rightly) felt that definition was unsatisfactory, because it is 
somehow saying that a set is ‘finite’ if it is, well, ‘finite’ (what is that ‘n’ supposed to 
be? A ‘finite’ natural number?). Even Cantor himself struggled (like a poet might over 
the spelling of a word) to give a satisfactory definition, and it was, in fact, Dedekind 
who provided the first satisfactory one. 

},,, 21 naaa K

.N∈n

    
So, now you know!! 
 
                                                           
27 One needs to know that every irrational number α  has a unique expansion of the form: 

],,,,,[ 210 infinitum adaaaa n KK  

where is the ‘integral part’ of 0a ,α and the other a are natural numbers, the so-called ‘partial 

quotients’ of 
i

.α  
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Definition 2. A set S is said to be infinite28 if there is a 1-1 correspondence between 
the elements of S and those of ’a’ some element adjoined to S.  U },{aS
 
Definition 3. A set S is said to be countable (another term that is used is 
denumerable) if its elements can be put in 1-1 correspondence with N, the (infinite!) 
set of natural numbers29. 
 
Definition 2a. A set is said to be infinite30 if it contains a countable subset. 
Comment. So a set is ‘infinite’ if it has elements , one for every natural 
number. (Tongue-in-cheek: ad infinitum!) 

K,,, 321 aaa

 
Definition 4. A set is said to be uncountable if it is infinite but not countable. 
Comment. So, the set of real numbers (all of them, or any non-zero interval of them) 
is uncountable. The reals provided the first historical example of such a set. 
 
Some elementary standard results.  
 
Simple result 1. Let A be any countable set, then the set obtained from A by 
adjoining any (‘extra’) finite number of elements is also countable (i.e. let 

U K },,,{' 1 reeAA = then  is also countable).  'A
 
Comment. You may think of this as being about accommodating an extra finite 
number of passengers turning up at an already filled Hilbert hotel. 
 
Proof. Since A is countable, then its elements are some . Now, 
define a function  f on 

KK ,,,, 321 naaaa
U K },,{ 1 reeA as follows: 

 
•  … , ,)( 11 eef = ,)( 22 eef = ,)( rr eef =   
• ,)( 11 += raaf ,)( 22 += raaf  … , ,)( nrn aaf +=  … (all )N∈n  

 
In short, ,,,, 21 ree K

},,1 K

e , is a new countable listing of the elements 
of .

KK ,,,, 321 naaaa
{U reeA  

 
Simple result 2. Let A be any infinite set31, then the set obtained from it by adjoining 
any finite number of ‘extra’ elements has the same number of elements as A itself (i.e. 
there is a 1-1 correspondence between the elements of A and U K },,,{ 1 reeA where 

},,{ 1 ree K are the ‘extra’ elements). 
 

                                                           
28 This is one possible definition; there’s another shortly. 
29 Of course that definition rather takes for granted that one (somehow) knows what that set ‘N’ is. If 
one wanted to, then one could study exactly that question: what is ‘N’? Such a study would involve 
considering (say) the Peano axioms. A web reference for Peano: 
 http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Peano.html  
30 It might be correct to say that this is most people’s innate understanding of what an infinite set is. 
31 Not necessarily countable. 
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Proof. Since A is infinite then it contains a countable subset  (say). Let 'A
},,{ 1 ree K be the ‘extra’ elements (not in A), and let },,,,{' 321 KKaaaA na= be the 

countable subset of A. Now, define a function  f on U K },,{ 1 reeA as follows 
 

• If ,', AaAa ∉∈  then let ,)( aaf =  otherwise 
• Let ,)( 11 eef = ,)( 22 eef =  … , ,)( rr eef =   
             ,)( 11 += raaf ,)( 22 += raaf  … , ,)( nrn aaf +=  … (all  
 

)N∈n

Simple result 3. ‘A countable union of countable sets is countable’ (an old reliable; of 
course it’s merely the accommodating of an infinite32 number of Hilbert buses in a 
single Hilbert hotel). 
 
Proof. (Aside. Of course one could say that we’ve already ‘proved’ this result, or 
rather say that it would just be a matter of translating the ‘passengers’ proof into this 
new language. So what I am going to do here – merely to show a variation – is to give 
another different, standard proof. This one will use a particular way of factoring 
natural numbers:) 
 
A simple result from Number Theory. Every natural number n may be expressed in 
the form for some non-negative integers a and b; furthermore, that 
representation is unique. 

)12(2 +ba

 
Comment. The first part is straightforward:  
 

• if n is odd, then for some non-negative integer b,  ),12(20 += bn
• if n is even, then let be the largest power of 2 that divides n, and so 

where must be odd (otherwise 

a2
'n,','2 N∈= nnn a ,'',''2' N∈= nnn  which 

would give ,''2)''2('2 1 nnn aa 2an +==
, a2

=
2 1+a

'n

 which would mean that n was 
divisible by conflicting with being the largest power of 2 dividing n. 
So, that  must be odd.) 

 
Some numerical examples.  
 

)12.(225250 1 +×=×= 121  
)12.(253253 0 +×=×= 260  

)12.(21232 5 +×=×= 05  
 
Proof of ‘uniqueness’. Suppose for some non-
negative integers Then 

),12(2)12(2 2
2

1
1 +=+= bbn aa

,21 aa.,,, 2211 baba = for if not, and, say 
then is divisible by 2, whereas ( is odd. 

Thus and similarly and thus 
,21 aa <

1a
),

.21 aa
12(2 2

12 +− baa

,12 aa </
)12( 1 =+b

,2

)12 1 +b
a</ = Hence ,12 2 +=12 1 + bb

)12( +ba
giving 

 Thus the representation is unique. .21 bb = 2=n
 
                                                           
32 Countable infinite! 
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Return to proof of countable union result. Let  be a countable 
set of sets, each of which is countable. Then their elements may be listed: 

KK ,,,, 21 nSSS

 
   (In   :)1S K,,, 3,12,11,1 sss
   (In   :)2S K,,, 3,22,21,2 sss
   (In   :)3S K,,, 3,32,31,3 sss

etc 
 
Now, let and let ,N∈n )12(2 (uniquely) 1 −= − bn a for ,, N∈ba and define the 
function f by then that sets up a 1-1 correspondence between the 

elements of N and those of  . 

,

KKUU U nSSSS 321

) , basn =(f

 
Section 3 

 
Algebraic and transcendental numbers33 

 
Introduction to a new way of looking at numbers. As you know, an early 
classification of (real) numbers distinguished two types: rational and irrational. 

Simple examples of the latter are ,2log,21,,7,2 10
43

31
2

11
3

4
37 −+ …, less simple34 

are examples like  … , extremely difficult ones are ,, 2ππ ,2, 2πe  … , and – for 
example – some of unknown status are ones like ,,),( πππ eee + … . 
 
A way of looking at numbers (introduced by the great Euler35) was to regard them as 
being solutions of equations of a very particular type. For example, a rational number 
may be regarded as being a solution of the special equation  
 

0=+ bax  … (i) 
 

where a and b are integers (with ).0≠a Thus, for example, 
 

• 2
3  is a (in fact, the) solution of the equation .032 =−x  

 
However, a simple number like (e.g.) ,2

2 +ax

is not a solution of an equation of type (i) 
above (it is, of course, a solution of the completely trivial equation 0 as is 
indeed every number). But, with a slight change, we see that there is some equation – 
not much different from (i) (in fact:  a, b and c are integers (with 

– for which 

,00 =+x

,0=+ cbx
)0≠a 2 is a solution, namely the one with .2−=,0,1 == cba  

 
All this is leading to: 
 

                                                           
33 See also my separate, but related notes on ‘Irreducible polynomials’ (of the second degree). 
34 To prove, that is. 
35  http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Euler.html 
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Historical Note: When Cantor first showed (in a famous paper of early 1874) that the 
real numbers could not be paired in a 1-1 way with the natural numbers, he did so to 
establish that there existed ‘transcendental’ (meaning non-algebraic) numbers. So, 
what is an ‘algebraic’ number? 
 
Definition: α  (real or complex) is said to be algebraic over the integers (Z) if α=x  
is a solution of some polynomial equation of the form 
 

01
1

10 =++++ −
−

nn
nn axaxaxa K  

 
where36 and , .00,,,, 110 Z∈− nn aaaa K ≠a  
 
Examples of algebraic37 numbers. 
 

• All rational numbers are, of course, algebraic. 2
3  is a (in fact, the) solution of 

the equation  .032 =−x
 
• 2 is a solution of the equation  Of course one could also say that .022 =−x

2 is a solution of the equation (just as one could say that 044 =−x 2
3 is a 

solution of the equation but – in a sense that can (and will) be 
made precise – the simplest equation (of the very precise kind in the above 
definition) for which 

),0=94 2 −x

2 is a solution is  .02 =2 −x
 
• 2

1
7
3 3 − is a solution of the equation  where the integers a, b 
and c are… (I don’t need to tell you what they are; we can find them by 
setting: 

,02 =++ cbxax

 

,2
1

7
3 3 −=x then ,6 73 −=x14 ,36714 =+x ,( 22 )36)714( =+x

.0591962 =−+ xx

  

giving 196 and finally 196  
 

,108491962 =++ xx

      Thus 2
1

7
3 3 −=x is a solution of the equation196   .0591962 =−+ xx

 
• 32 + is an algebraic number, and the coefficients of an appropriate 

equation are easily found by setting: 
 

,32 +=x  then ,62533222)32( 22 +=+×+=+=x  
giving ,6252 =−x  ,24)62()5 222 ==−x

,2425 = 10 24 − xx
( which tidies up to 

namely  10 24 +− xx .01 =+
 

                                                           
36 The ‘coefficients.’ 
37 It is standard practice to use the simple ‘algebraic’ for ‘algebraic over Z’. (So why introduce the 
earlier terminology? It’s simply that in more general settings, the coefficients can be other sorts of 
exotic mathematical objects, besides ‘Z’.) 
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• All the above examples are of real algebraic numbers, but there are complex 
algebraic numbers, e.g. ,32(32 i+=−+ where ‘i’ is, of course, the 
square root of  is an algebraic number, and the coefficients of an 
appropriate equation are easily found by setting: 

),1(−
,32 −+=x  then 

,621332232(2 −+−=−−×+−+=x 2)2 = giving ,6212 −=+x   
     ,24)62()1( 222 −=−=+x which tidies up to namely ,2412 24 −=++ xx
       
 

.0252 24 =++ xx

 Thus 32 −+=x is a solution of the equation which has 
      integral coefficients, and non-zero leading coefficient. 

,0252 24 =++ xx

 
Comment. In introducing the notion of an algebraic number, Euler (or anyone else for 
that matter) might well have believed that every number (real or complex) would be 
algebraic (there are simply so many polynomials – with integral coefficients, and non-
zero leading coefficient – (an infinite number of course!) that one might feel: surely 
one of those will ‘do’?), especially if one bears in mind that the following (of which 
the last one is especially significant) may be proved: 
 

• the sum, product, difference, ratio (non-zero denominator, of course) of any 
two algebraic numbers is also an algebraic number (of course the same is true 
of rational numbers, for example) 

 
• but, much more strikingly, every solution of an equation of the form  
 

01
1

10 =++++ −
−

mm
mm bxbxbxb K  

 
            where the ,,,,, 110 numbers Algebraic∈− mm bbbb K and is itself an 
            algebraic number 

,00 ≠b

 
That last result (which I won’t be proving; it’s not that it’s difficult, but it does take so 
setting up of other ideas and techniques) is really striking!! In my view it’s precisely 
that, that could well have led one to believe that there might be no numbers that 
aren’t algebraic. Let’s take a brief look at what it means: suppose one took the 
equation (I am choosing an especially simple example, with a point though) 
 

011
13

3
2 =+ −x      … (i) 

 
in which the coefficients 11

1
3
2  and − are not all integers (in fact none are, and the 

second one is a complex number). Some numbers are the solutions of (i), and they are 
all algebraic numbers!! Why? Simply rearrange (i) by obvious moves: 
 

,11
13

3
2 −−=x ,)()( 2

11
123

3
2 −−=x ,11

16
3
2 −=x ,322 6 −=x giving 

0322 6 =+x      … (ii) 
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Now every solution of (i) is a solution of (ii) (but not vice-versa; there will be 3 
‘extra’ solutions), and thus every solution of (ii) is an algebraic number, then so too is 
every solution of (i). 
 
Comment. Just absorb the point, and take it that there is a way of proving the general 
assertion (the so-called ‘closure’ theorem concerning algebraic numbers) 

 
Algebraic numbers before (and just after) Cantor’s 1873 work. In the middle 
1700’s Euler wondered if there were any transcendental numbers38, but could not 
prove any suspects ,(π  for example) to be so. The first example of a transcendental 
was proved by the French mathematician Liouville39 in 1844; the example he gave 
was the (infinite, of course) decimal:  
 

0.110001000000000000000001000… 

namely, ∑ . 
∞

=1
!10

1
n n

 

Hermite40 gave a difficult proof that the number e )(
1

!
1∑

∞

=
=

n n is transcendental, and in 

1882 Lindemann41 gave a very difficult proof that the classic number, ,π  is 
transcendental. 
 
Cantor proved that there existed a transcendental number, in fact, he did more:  he 
proved that there existed an uncountable number of real transcendental numbers. 
To see how he did it, we just need to introduce three simple concepts in connection 
with an algebraic number, its degree, its minimal polynomial, and its height. 
 
Definition. An algebraic number is said to be of degree r if it is a solution of some 
polynomial equation of degree r, with integer coefficients (leading one non-zero), and 
is not a solution of such an equation of smaller degree. 
 
Examples.  
 

• All rational numbers are automatically of degree 1 
 
• 7 (e.g.) is algebraic, of degree 2, since 7

,0

is a solution of the quadratic 
equation and cannot be a solution of a 1,072 =−x

,0=+ bax

st degree polynomial 
equation integers a and b, ≠a since otherwise 7 would be 
rational (which it isn’t) 

      Note. ,3
2 is, of course, a solution of the 2nd degree equation 9 and so ,042 =−x

      it is algebraic. But 3
2 is not of degree ‘2’ since it is a solution of the smaller  

      degree equation 3  (which has integer coefficients) 02 =−x
 

                                                           
38 He introduced the term ‘transcendental’ (‘transcending the power of the algebraic’). 
39 http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Liouville.html 
40 http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Hermite.html 
41 http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Lindemann.html 
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Definition. Let α be an algebraic number of degree n, and suppose α  is a solution of 
the equation then 

 is said to be the minimal polynomial of 
,01

1
10 =++++ −

−
nn

n axaxaa K

nn axa +++ −1
1

nx
K

;0,,,,, 0110 ≠− aaaaa n ZK ∈n
nn xaxa + −

10 α  if 
and gcd(00 >a .1),,, 11,0 =− nn aaa Ka  

 
The point of that definition. Let’s look at a particular algebraic number, e.g., 

,6
735+  which happens to be a solution of the quadratic equation 

 
0453 2 =−− xx       … (i) 

 
Of course, being a solution of (i), it is also a solution of 
 

0453 2 =++− xx       …  (ii) 
 

And one could also say that 6
735+ is a solution of the equation 

 
012159 2 =−− xx       …  (iii) 

 
In short, (i) is – in a sense – the simplest polynomial equation (integer coefficients, 

etc) for which 6
735+ is a solution (being irrational it is not of degree 1), and that 

‘ 4 ’ is referred to as its ‘minimal polynomial’. 53 2 −− xx
 
Definition. Let b nn

nn bxbxbxbx ++++= −
−

1
1

10)( K  be a polynomial of (genuine, 
i.e., degree n with integer coefficients, then the height of b(x) – denoted by 
h(b(x)) – is the sum of the absolute values of the coefficients of b(x). 

)00 ≠b

 
Examples. 
 

1. 9342342)342( 2 =++=+−+=+− xxh  

2. 1010)10( 3 =−=− xh  

3. 120304050304050)304050( 12 =++=+−+−=+−− xxh  
 
Important comment. For fixed degree, there are only a finite number of polynomials 
of given height.  
 
Example. If one took the degree to be ‘5’ (say), there would be only a finite number 
of 5th degree polynomials of height 8 (say). Why? Well, the 6 possible coefficients 

would be required to satisfy 510 ,,, bbb K

 
8510 =+++ bbb K  

 
and since that trivially forces every coefficient to lie between 8− and 8 then there are 
only a finite number of possible b’s satisfying that restriction. 

 Page 19 of 28



The Real Numbers and Cantorian Set Theory (Notes by John Cosgrave) 

Definition. Let nn
nn axaxaxaxa ++++= −

−
1

1
10)( K  be the minimal polynomial 

of ;α then the height of α is the height of a(x). 
 
Examples. 
 

1. The height of 2 is 3. 
2. The height of 2

15+  is 3. 

3. The height of 2−  is 3. 
4. The height of 1− is 2. 
5. The height of 2

3 is 5. 

6. The height of 4
6 is (also) 5. 

 
The point of all of these definitions. 
 

• Cantor argued that there is only a countable number of algebraic 
numbers. Why? There are only a finite number of algebraic numbers of given 
degree r, and height h. Then, fixing the degree, and varying the height, we 
find that there are only a countable number of algebraic numbers of given 
degree. Finally, we vary the degree, and since there is only a countable 
number of algebraic numbers for each degree, and only a countable number of 
degrees (degree 1, degree 2, degree 3, … ), then there is only a countable 
number of algebraic numbers altogether. 

 
• Cantor then argued that there must exist transcendental numbers, in fact an 

uncountable number of them. How? Well, first of all the real numbers are 
uncountable, but the real algebraic numbers are countable. Thus there must 
exist some (either a finite number, a countable number, or an uncountable 
number) real transcendental numbers. There could not be just a finite number 
of them (since the union of a countable set and a finite set is countable), nor 
could there be only a countable number (since the union of a countable set and 
a finite set is countable), and thus there must exist an uncountable number of 
real transcendental numbers. 

 
Euler’s conjecture re some possible transcendental numbers (leading to 
‘Hilbert’s seventh problem’). I start with some simple, familiar numerical facts: 
 

( ) ,3
2

27
8 3

1
= ( ) ,7

1 7
1

=
− ( ) ,5

6
36
25 2

1
=

−
,1642 = ( ) ,25

36
36
25 1

=
−

… (make up your own) 
 

Those are deliberately intended to be examples of the following: a rational number  
raised to a rational power p, turning out to be another rational number  Simple, 
yes? But now consider this: what is the nature of the number p (is it rational? is it 
some algebraic number of (perhaps) the 30

,1r
.2r

th degree?, is it transcendental?) in 
 

( ) 3
2

27
7 =

p
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where, as you see, I have merely changed the ‘8’ to a ‘7’ in ( ) ,3
2

27
8 3

1
= and put a ‘p’ in 

place of that ‘ . ’ Well, as you will know from our class discussion (with easily given 
proof), that ‘p’ is irrational. And a similar sort of thing happened with other 
examples… Then we noted that of course one could make up trivial examples like 

3
1

,00 2 = ,00 4
3

= ,11 =
π

,11
3 2 =− … , and out of all of that Euler posed this question: 

suppose one has two rational numbers and r (with 1r 2 )1,01 ≠r related by 
 

21 rr p =  
 

then, what is the nature of the number ‘p’. A great intuition of Euler’s suggested: 
 

if  p is not rational, then it is transcendental42 
 
Euler couldn’t prove it (even he!)… 
 
Hilbert’s (simple) extension of Euler’s conjecture (the seventh problem of his 
famous list). Let and be algebraic numbers (with such that 

then p is either rational or transcendental. (Alternatively, the ratio of the 
logarithms of two algebraic numbers is either rational or transcendental. Or, the 
normal version of this problem: let 

1a 2a )1,01 ≠a
,21 aa p =

α and β be algebraic numbers ( ,1,0≠α and 
β irrational) then βα is transcendental.) 
 
(Standard) Examples. 22 is transcendental. πe (being one of the values of the 
complex number ))1( 1−−− is transcendental. 
 
Comment. Hilbert once opined43 (in the 1920’s) that the last problem would not be 
settled in his lifetime… , but it was settled… (a long story…) 

 
Section 4 

 
I see it, but I do not believe it… 

 
A ‘higher infinity’ than the reals?  When he proved (in December 1873) that there 
is no 1-1 correspondence between the natural and real numbers, Cantor naturally 
turned his attention to an obvious next question: is there some collection/set of things 
that is somehow ‘larger’ (in a then not explicitly defined sense) than the real 
numbers? An immediate, obvious candidate was the set of all points in the plane, 
and, since that set is easily seen to be of the same cardinality as any finite square (with 
non-zero side, of course!), and there is a 1-1 correspondence between the set of all 
real numbers and the set of all real numbers on any finite line segment (not a single 
point, of course!), then the problem to be settled became: could one prove that there 

                                                           
42 An (obvious) alternative formulation is this: the ratio of the logarithms of two rational numbers is 
either rational or transcendental. 
43 There is a C.L. Siegel anecdote relating to this in Constance Reid’s Hilbert biography. 
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is no 1-1 correspondence between the points of the unit square (say) and the set of 
points on a unit line (say). 
 
Why might that have appeared to be a reasonable candidate?  Well, if one thinks 
of a square as being a (vertical, say) layering of lines, each defined by an end point 
which varies along the entire length of a vertical line segment, and there are 
uncountably many such end points, then certainly those lined can’t be dismantled (as 
it were) and laid end-to-end to form the doubly infinite line segment of the real 
numbers.  
 
(Four years later, however, the sensational) Theorem. (Famously he wrote to 
Dedekind: “I see it, but I do not believe it”.) There is a 1-1 correspondence between 
the points in the unit square ],1,0[]1,0[2 ⊗=S and the real numbers on the unit 
interval   ].1,0[1 =S
 
Proof44. Let ,),( 2Syx ∈ and let x and y have decimal expansions given by: 
 

90,0 321 ≤≤= nxxxxx K.  
90,0 321 ≤≤= nyyyyy K.  

 
Then, pair the (single) point (x, y) with the (single) real number X (in  defined by )1S
 

K3322110 yxyxyxX .=  
 

Conversely, let ,1SX ∈ and let X have decimal expansion given by: 
 

90,0 654321 ≤≤= nXXXXXXXX K.  
 

Then, pair (the single) X with the (single) point (x, y) (in where x and y are 
defined by: 

)2S

 
K5310 XXXx .=  
K6420 XXXy .=  

 
(Aside. To get a feeling for what is going on, one should consider some simple, 
doable examples. Take ;), 23

1
2
1 S∈( then K500002

1 .= and ,333303
1 K.=  and thus 

),( 3
1

2
1  is paired with (which is K530303030.=X ).66

35
33
1

2
1

99
3

2
1 =+=+  Similarly, 

take ;17
4 S∈ then ,571428571428 K.07

4 =  and so 7
4  is paired with ( where 

(which is 
,), 2SYX ∈

K5125125120.=X ),999
512 and K7487487480.=Y (which is ).999

748  
   Of course, those were nice, easy examples (because one knew the exact decimal 
representations), whereas if one considered an example like (say): take 

;),12( 23
1 S∈− then 12 − does have a decimal expansion, but, being an irrational 

number, it does not have a periodic decimal expansion, and so one can’t do the sort of 
                                                           
44 I present the ‘proof’ in its standard (flawed) form. Like the earlier ‘diagonal-decimal’ proof, it suffers 
from a rectifiable flaw. 
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thing we did above. However, the point is though that 23
1),12( S∈− is paired with a 

unique element of  (whose decimal expansion will commence: 
0.43134323133353…, since 

1S
s'2 decimal expansion commences 1.4142135… ) 

[End of Aside] That, then, pairs every element of  with an element of and vice 
versa. Thus ‘There is a 1-1 correspondence between the real numbers in the unit 
square 

1S ,2S

],1,0[]1,0[2 ⊗=S

↔

and the real numbers on the unit interval ’ [End 
of ‘proof’] 

].1 =S 1,0[

α

α

]1 ⊗

), 1y ,100
74( 100

43

),( 11 yx

.α

],1,0[]1, ⊗

],,, 32 KK naaa

S

∈ 2S∈), yx

nx
, ny

,3 K

x
y

0[=),( yxF

 
The flaw. It is simply that the correspondence is not 1-1 (it’s as if in comparing the 
sets A = {p, q, r, s} and B = {2, 6, 23}, that we set up the correspondences: p 2, 
q 6, r 23, and finally s 6. Both ‘q’ and ‘s’ have been paired with ‘6’), as we 
will now see (it all revolves around the phenomenon of non-unique decimal 
expansions of certain numbers). 

↔
↔ ↔

 
Consider any  number in [0, 1] which has a non-unique decimal expansion, e.g.: 
 

 = 0.74329999 … = 0.7433000 … 
 
Then note that two different elements of ]1,0[,0[2 =S  
 

( 1x = (0.73999 … , 0.42999 … ) = (0.74000 … , 0.43000 … ) = )  
and 

= (0.73000 … , 0.43000 … ) = ),( 100
43

100
73  

 
are both paired with  (Advice. Create your own such example.) 
 
Yes, the flaw can be rectified. But it’s just a bit messy… However, here is a slight 
(correct!) variation of the above: 
 
Theorem. There is a 1-1 correspondence between the points in the unit square 

both of whose co-ordinates are irrational, and the set of irrational 
numbers in the unit interval   

0[2 =S
].1,0[1 =

Proof. Every irrational number in [0, 1] has a unique continued fraction expansion 
where N,,0[ 1a ∈na  for all .Nn Then, with and x, y 

both irrational, we have: 
(

],,,,,0[ 321 KKxxx=  
],,,,0[ 321 KKyyy=  

 
and a function F(x, y) defined by 
 

],,,,,,,,, 32211 Knn yxyxyxyx  
 

has irrational values in the unit interval, and there is now no flaw with regard to being 
1-1. [End of proof] 
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Section 5 
 

Cantor’s ‘nested interval’ proof 
 

The most commonly seen (in text books) proof of Cantor’s that the real numbers are 
uncountable is his classic diagonal-decimal proof, but another really elegant proof of 
his is the ‘nested interval’ one (originally it was a bit more cumbersome, but it was 
tidied up by Dedekind). It requires at one critical point an appeal to the so-called: 
 
Fundamental property of the real numbers. Let { be any monotonic increasing 
sequence of real numbers (i.e. 

}na
KK ≤≤≤≤≤ naaaa 321

Aan

) that is bounded above (i.e. 
there is some A such that ≤ for all )N∈n then converges (i.e. 

exists). 
}{ na

nn
a

∞→
lim

 
Comment. This seemingly innocuous property is extraordinarily subtle, and 
completely encapsulates the critical difference there is between the rational and the 
real numbers: whereas there are monotonic increasing sequences of rational numbers 
that are bounded above, the sequence{ does not necessarily converge to a rational 
number (can you think of an example?)  

}na

 
(Of course there are monotonic increasing sequences of rational numbers that are 
bounded above and { converges; can you think of examples?) There is also the: }na
 
Fundamental property of the real numbers (alternative version). Let { be any 
monotonic decreasing sequence of real numbers (i.e. b ) that 
is bounded below (i.e. there is some B such that b for all then 

converges (i.e. exists). 

}nb
K≥n

N∈n
K ≥≥≥≥ bbb 321

Bn ≥ )
}{ nb nn

b
∞→

lim

 
A marriage of these two results may be made, and be called: 
 
The fundamental nested interval property of real numbers. Let { and { be 
monotonic increasing and monotonic decreasing sequences of real numbers such that 

for all  then there is some real number that lies in all the nested closed 
intervals{ where   

}na }nb

nn ba ≤ ,N∈n
I},nI ].,[ nnn ba=

 
Comment. This result is an immediate consequence of the two earlier fundamental 
results. Being ‘closed’ is an important element in its validity (the nested open 
intervals K),,0(),,0(),,0(),,0(),1,0 5

1
4
1

3
1

2
1( do not share a common point). 

 
Now we are ready for: 
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The nested interval proof that the real numbers are uncountable. Suppose that 
is a countable enumeration of all real numbersK,,,, 4321 rrrr 45.  

 
First choose any such that a11 , ba 11 b< and ],,[ 1111 baIr =∉  and successively define 
intervals as follows: ,,4 K,, 32 III
 

• ,21 aa ≤ ,12 bb ≤ and r ],[ 2222 baI =∉  
• ,32 aa ≤ ,23 bb ≤ and ],[ 3333 baIr =∉  

… … In general: 
• and ,1 nn aa ≤− ,1−≤ nn bb ],[ nnnn baIr =∉  

 
Then – by the fundamental nested interval property – there exists some R∈r with 

for all and for some nIr ∈ ,N∈n irr = .N∈i  But then ],[ iiii baIr =∉ is impossible, 
and so an countable enumeration of the reals is impossible. 

_______________ 
 
Comment. Of course what makes that proof ‘work’ is the fundamental property…  
If one considered just the rational numbers, Q, one may construct a nested sequence 
of closed intervals of rational intervals (i.e., the end points and all interior points are 
rational) with no rational number common to all of them: for example, consider the 
(real) irrational number 2 and its ‘L and R-approximations’ (or, if you prefer, the 
alternating ‘partial convergents’ obtained from its non-terminating continued fraction 
expansion). Then, arrange its L-apprs in ascending order (of size) K,,, 29

41
5
7

1
1  , and 

its R-apprs in descending order (of size): K,,, 70
99

12
17

2
3  ; then the closed intervals (all 

with rational end points) [ ],, 2
3

1
1 [ ],, 12

17
5
7 [ ],, 70

99
29
41 … have no rational point in common 

(because, of course, the only point that they actually have in common – from a higher 
vantage point, as it were – is the real irrational number ).2  
 

Section 6  
 

The ‘power set’ of a set 
 

Question. Given any set S, does there exist a set 'S  with a higher finite level of 
cardinality than S? In other words, is there a set '–ideally (though not necessarily) 
obtained, somehow, from S– such that the elements of S and cannot be put in 1-1 
correspondence, but the elements of S can be put in 1-1 correspondence with some 
subset of  

S
'S

'.S
 
A response. The answer is completely trivial, of course, if the set S has a finite 
number of elements: simply form the set },{' aSS U= where ‘a’ is some ‘extra’ 
element (not in S). In short, simply add an extra element to S, so increasing its 
cardinality by ‘1’. Of course, that is not the only way to form a larger set from a finite 
set, but at least it does what we require. However it would appear to be a much more 

                                                           
45 In what follows it should be understood that all the defined a’s and b’s are real numbers. 
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difficult thing to achieve a similar construction in the infinite case. I very much doubt 
that anyone–who didn’t come to hear what Cantor actually came up with–would find 
a way unless aided. Reflect on Cantor’s own initial belief–which he held onto for 
some three years, before he eventually demonstrated its invalidity–that the set of 
points in the plane (which is, of course, equivalent to the set of points in any square of 
non-zero side) provided a higher level of infinitude than that of the real numbers. 
 
Given the background–natural numbers, rationals, irrationals, reals, the difficulty of 
seeing/creating/discovering/guessing a larger infinity than the reals–it should come as 
a shock to see Cantor’s stunningly simple creation of a general method for producing 
a greater level of infinity from any give level. This is something to savour and 
appreciate, before which anyone, who doesn’t already know what Cantor did, should 
think about it. 
 
Definition: Let S be a set (finite or infinite); by P(S), the ‘power set’ of S is meant the 
set of all subsets of S (i.e. }).''{)( SSSSP ⊆= 46  (It is a standard convention to denote 

the power set of S by  – and indeed to refer to the cardinality of P(S) as beingS2 S2  – 
where S  denotes the cardinality of S (i.e. how many elements there are in S). A 
reason for that nomenclature will be clear after considering a few examples.) 
 
Examples. 
 

• Let be a set with three elements, then the power set of  has 8 
elements:{ and 

},,{3 cbaS =
},{}, ba

3S
},,,{},,{},,{},,{},{ cbacbcabac φ  (the ‘empty set’, 

representing no choice).  
 
• Let be a set with four elements, then the power set of  has 

16 elements {  
and 

},,,{4 dcbaS =
},{}, ba

},, cb },,,{ dba

4S
},d},{},{ dc

},,,{ dca
},,{},,{},,{ dacaba

},,,{ dcb ,,,{ dcba
,{},,{},,{ cdbcb

}, .,{a φ  
 

• Let S be the set of all natural numbers; then the power set of S has (a lot of!) 
elements, some of which are: {1}, {2}, {3}, … {1, 2}, {1, 3}, {1, 4}, …  
{2, 3}, {2, 4}, {2, 5}, … … , {120, 121}, {120, 122}, … , {1, 2, 3}, {1, 2, 4}, 
… , … … … , {1, 2, 3, 4, 5, 6, … }, … {2, 3, 5, 7, 11, … } (the primes!), … 
{2, 4, 6, 8, 10, 12, … } (all even nat. nos.), … … … (you must try to imagine 
many different types of examples of such elements), and, of course, .φ  

 
A reason for the ‘power set’ terminology. All, in fact, should be clear after 
considering just the first example above. },,{3 cbaS = has 3 elements, and laboriously 
we listed all elements of  However, without listing all (8) elements of 

we may see that it has elements by thinking of subsets of  
as being of the form {X, Y, Z} where 

).( 3SP
8(23 =)( 3SP ) },,{3 cbaS =

 
X is either ‘a’ or blank (and so X has – as it were – 2 ‘values’) 
Y is either ‘b’ or blank (and so Y has – as it were – 2 ‘values’) 

                                                           
46 There is a good reason for the name–power set–and the associated notation, which will be clear in a 
moment. 
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Z is either ‘c’ or blank (and so Z has – as it were – 2 ‘values’) 
 

(So, e.g., the subset {a, c} is simply {a, blank, c}, or, e.g., φ  (the empty subset) is 
simply {blank, blank, blank} 
 
By simple combinatorics, then, the number of subsets of  is 2  Indeed it should be 
seen that for any finite n, the number of subsets of 

3S
,1a

.3

,K ),( 2 nn aaS = is  .2n

 
Comment. Another way of seeing it (again when n is finite) is via a familiar use of 
the binomial theorem. Start with 
 

n
n

nn
n

nnnnn xCxCxCxCCx +++++=+ −
−

1
1

2
210)1( K   … (i) 

 
and set  to give: 1=x
 

• The LHS of (i) is simply 
 

n2  

• The RHS of (i) is and the connection 
should now be obvious since the individual binomial coefficients in turn 
count how many subsets there are formed from n objects by successively 
choosing none of them, 1 of them, 2 of them, … , n of them. 

,n1n CCCCC nnnnn +++++ −K210

 
So much, then, for nomenclature. 
 
It was another of Cantor’s remarkable discoveries that the power set of any set, 
produces a higher level of cardinality (be it a finite set–in which case it is, of 
course, trivial–or an infinite set (definitely non-trivial!)). It may come as a surprise 
that a proof of that remarkable fact is extraordinarily simple (with the usual 
hindsight!) 
 
Theorem (Cantor).  There is no 1-1 correspondence between the elements of S and 
those of P(S). 
 
Comment. I could give the proof immediately (it is very short, but it could well leave 
you with a feeling of bewilderment), and I believe that you will find it easier to follow 
the proof if I first of all motivate it by considering a special case of it–the simplest 
case–where the set S is the ‘smallest’ infinite set, the set N of natural numbers. 
 
A thought experiment. Imagine for a moment that the elements of N, and its power 
set P(N), could be put in 1-1 correspondence, and (just to get us going) suppose that 
the early correspondences went something like this (elements from N given first, with 
their corresponding paired elements from P(N) coming second): 
 

‘1’ paired with {4, 8, 790} =1s
‘2’ paired with {2, 4, 6, 8, 10, 9876} =2s
‘3’ paired with {1, 2, 4, 5, 6, … ad infinitum} =3s
‘4’ paired with {4} =4s
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‘5’ paired with {1, 2, 3, 5, 10, 15, 20, 25, 30, 35, … ad infinitum} =5s
‘6’ paired with =6s φ  (the empty subset of N) 
‘7’ paired with {7, 1000000000000765} etc  =7s
 

I wish to draw your attention to a very important notion, which takes its meaning 
directly from the supposed 1-1 correspondence; look at the following reproduction of 
the above initial terms, but with certain elements from N being highlighted: 
 

‘1’ paired with {4, 8, 790} =1s
‘2’ paired with {2, 4, 6, 8, 10, 9876} =2s
‘3’ paired with {1, 2, 4, 5, 6, … ad infinitum} =3s
‘4’ paired with {4} =4s
‘5’ paired with {1, 2, 3, 5, 10, 15, 20, 25, 30, 35, … ad infinitum} =5s
‘6’ paired with =6s φ  (the empty subset of N) 
‘7’ paired with {7, 1000000000000765} etc   =7s
 

What I am drawing your attention to is that 
 

• some of the natural numbers–in the above supposed 1-1 pairing they happen to 
be 2, 4, 5, 7, (and possibly some others, further along)–are members of the 
subsets with which they are paired 

 
• whereas others–in the above they are 1, 3, 6, (and possibly some others, 

further along)–are not members of the subsets with which they are paired.  
 
I would like to call each of the former natural numbers internal elements with respect 
to the (supposed) pairing, and call each call each of the latter natural numbers 
external elements with respect to the (supposed) pairing. 
 
Next, form the subset of P(N) which consists of all external n’s in the above supposed 
1-1 pairing; from the above illustration that subset ,( rs some )N∈r would look like 
this: 

=rs {1, 3, 6, with some, or possibly, no other n’s} 
 
(Thus ‘r’ is the natural number with which rs  is paired.) Now (the crux!) we see that 
the supposed 1-1 correspondence is impossible! Why? Simply think about the nature 
of that ‘r’. Is it ‘internal’ or ‘external’? (Of course, it must be one or the other!) 
 

• It can’t be internal, because, if it were, then it would be one of the numbers 1, 
3, 6, … , all of which are external. 

• It can’t be external, because, if it were, then it would not be one of the 
numbers 1, 3, 6, … , whereas they are precisely all the external n’s. 

 
Thus the s, consisting of all external n’s is not paired with any element of N, proving 
that a 1-1 correspondence between the elements of N and P(N) is impossible. 
 

 Page 28 of 28



The Real Numbers and Cantorian Set Theory (Notes by John Cosgrave) 

 Page 29 of 28

Comment. A proof of the general version of Cantor’s theorem just proceeds along 
similar lines (whether S be finite or infinite). Also, since the elements of S can clearly 
be paired in 1-1 way with some of the elements of P(S) (simply take all the singletons 
in P(S); i.e., all those elements of P(S) of the form {a}, where ‘a’ varies over all the 
elements of S), it means that P(S) has ‘more’ elements than S). 
 
Proof. Suppose there is a 1-1 map from S to P(S), f, say. Define 
 

• ‘e’ is an internal element of S (with respect to ‘f’’) if )(efe ∈ (in P(S)) 
• ‘e’ is an external element of S (with respect to ‘f’’) if e )(ef∉ (in P(S)) 
 

For non-empty S, external elements do exist47, and – as above – considering the 
subset of all external elements leads easily to a conflict. [End of proof] 
 
Comment. It is obvious, then, that the power set P(S) of any set S has ‘more’ 
elements than S since the above theorem establishes that they do not have the same 
number of elements, and it is obvious that S has the same number of elements as some 
subset of P(S): simply make each element ‘e’ of S be paired with the {e} subset of 
P(S). 

__________ 
 

Final comment. Concerning the work of Cantor, we have merely scratched the 
surface… 
 
 
 

                                                           
47 In the introductory S = N case of this theorem we rather took for granted that there were some 
external elements (in the event of there being a 1-1 correspondence…), and one should raise this 
objection: did the ‘proof’ not rely upon assuming that there were some external elements? Of course it 
did. To get the proof-idea introduced I did lead you to the notion of ‘internal’ and ‘external’ elements 
(with respect to a supposed 1-1 correspondence). However, it is easy to see that such elements must 
exist if there is a 1-1 correspondence: for if there is a 1-1 correspondence and there are no ‘external’ 
elements then every element would be internal. But then, taking every subset of P(S) consisting of a 
singleton – {a} – the element of S with which {a} would have to be paired would be ‘a’ itself (from S) 
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